Determination of treatment need of posterior capsular opacification (PCO)-- one of the most common complication of cataract surgery -- is a difficult process due to its local unavailability and the fact that treatment is provided only after PCO occurs in the central visual axis. In this paper we propose a deep learning (DL)-based method to first segment PCO images then classify the images into \textit{treatment required} and \textit{not yet required} cases in order to reduce frequent hospital visits. To train the model, we prepare a training image set with ground truths (GT) obtained from two strategies: (i) manual and (ii) automated. So, we have two models: (i) Model 1 (trained with image set containing manual GT) (ii) Model 2 (trained with image set containing automated GT). Both models when evaluated on validation image set gave Dice coefficient value greater than 0.8 and intersection-over-union (IoU) score greater than 0.67 in our experiments. Comparison between gold standard GT and segmented results from our models gave a Dice coefficient value greater than 0.7 and IoU score greater than 0.6 for both the models showing that automated ground truths can also result in generation of an efficient model. Comparison between our classification result and clinical classification shows 0.98 F2-score for outputs from both the models.
translated by 谷歌翻译
Causal discovery, the inference of causal relations from data, is a core task of fundamental importance in all scientific domains, and several new machine learning methods for addressing the causal discovery problem have been proposed recently. However, existing machine learning methods for causal discovery typically require that the data used for inference is pooled and available in a centralized location. In many domains of high practical importance, such as in healthcare, data is only available at local data-generating entities (e.g. hospitals in the healthcare context), and cannot be shared across entities due to, among others, privacy and regulatory reasons. In this work, we address the problem of inferring causal structure - in the form of a directed acyclic graph (DAG) - from a distributed data set that contains both observational and interventional data in a privacy-preserving manner by exchanging updates instead of samples. To this end, we introduce a new federated framework, FED-CD, that enables the discovery of global causal structures both when the set of intervened covariates is the same across decentralized entities, and when the set of intervened covariates are potentially disjoint. We perform a comprehensive experimental evaluation on synthetic data that demonstrates that FED-CD enables effective aggregation of decentralized data for causal discovery without direct sample sharing, even when the contributing distributed data sets cover disjoint sets of interventions. Effective methods for causal discovery in distributed data sets could significantly advance scientific discovery and knowledge sharing in important settings, for instance, healthcare, in which sharing of data across local sites is difficult or prohibited.
translated by 谷歌翻译
由于大规模数据集的可用性,通常在特定位置和良好的天气条件下收集的大规模数据集,近年来,自动驾驶汽车的感知进展已加速。然而,为了达到高安全要求,这些感知系统必须在包括雪和雨在内的各种天气条件下进行稳健运行。在本文中,我们提出了一个新数据集,以通过新颖的数据收集过程启用强大的自动驾驶 - 在不同场景(Urban,Highway,乡村,校园),天气,雪,雨,阳光下,沿着15公里的路线反复记录数据),时间(白天/晚上)以及交通状况(行人,骑自行车的人和汽车)。该数据集包括来自摄像机和激光雷达传感器的图像和点云,以及高精度GPS/ins以在跨路线上建立对应关系。该数据集包括使用Amodal掩码捕获部分遮挡和3D边界框的道路和对象注释。我们通过分析基准在道路和对象,深度估计和3D对象检测中的性能来证明该数据集的独特性。重复的路线为对象发现,持续学习和异常检测打开了新的研究方向。链接到ITHACA365:https://ithaca365.mae.cornell.edu/
translated by 谷歌翻译
提供强大分布概括和快速适应的学习模型是现代机器学习的关键挑战。将因果结构建模到神经网络中,有望实现稳健的零和几乎没有适应性。可区分因果发现的最新进展提出,将数据生成过程分配到一组模块中,即每个变量的条件分布的一个模块,而只有因果父母仅将因果父母用作预测因素。这种知识模块化分解可以通过仅更新参数的子集来适应分布的转移。在这项工作中,我们通过将其与单片模型和结构化模型进行比较,在该模块上,我们系统地研究了这种模块化神经因果模型的概括和适应性性能,在该模型中,预测因子集不受因果父母的约束。我们的分析表明,模块化神经因果模型在低数据制度中的零和少数适应性上都优于其他模型,并提供了强大的概括。我们还发现,与较密集的图相比,对于稀疏图而言,这种效果更为重要。
translated by 谷歌翻译
El Nino Southern振荡(ENSO)是热带中央和东太平洋的海面温度(SST)的半周期波动,通过远程依赖或电信连接,影响世界各地的区域水文中的际变化。最近的研究表明了改进ENSO预测以及用于了解电信连接的复杂网络(CN)的深度学习(DL)方法的价值。然而,预测对Enso驱动的河流流动的差距包括DL的黑匣子性质,使用简单的ENSO指数来描述复杂的现象并将基于DL的ENSO预测翻译成河流预测。在这里,我们显示可解释的DL(XDL)方法,基于显着性图,可以提取全球SST中包含的可解释的预测信息,并发现对河流的新型SST信息区域和依赖结构,这些信息与气候网络结构串联,使得改进的预测性理解。我们的结果揭示了全球SST超越ENSO指数的更多信息内容,开发了对SSTS影响河流的新了解,并产生了与不确定性的改进的河流预测。观察,重新分析数据和地球系统模型模拟用于展示基于XDL-CN基于互际和分支尺度的气候预测的方法的价值。
translated by 谷歌翻译
Understanding the variations in trading price (volatility), and its response to exogenous information, is a well-researched topic in finance. In this study, we focus on finding stable and accurate volatility predictors for a relatively new asset class of cryptocurrencies, in particular Bitcoin, using deep learning representations of public social media data obtained from Twitter. For our experiments, we extracted semantic information and user statistics from over 30 million Bitcoin-related tweets, in conjunction with 15-minute frequency price data over a horizon of 144 days. Using this data, we built several deep learning architectures that utilized different combinations of the gathered information. For each model, we conducted ablation studies to assess the influence of different components and feature sets over the prediction accuracy. We found statistical evidences for the hypotheses that: (i) temporal convolutional networks perform significantly better than both classical autoregressive models and other deep learning-based architectures in the literature, and (ii) tweet author meta-information, even detached from the tweet itself, is a better predictor of volatility than the semantic content and tweet volume statistics. We demonstrate how different information sets gathered from social media can be utilized in different architectures and how they affect the prediction results. As an additional contribution, we make our dataset public for future research.
translated by 谷歌翻译
深度强化学习(RL)导致了许多最近和开创性的进步。但是,这些进步通常以培训的基础体系结构的规模增加以及用于训练它们的RL算法的复杂性提高,而均以增加规模的成本。这些增长反过来又使研究人员更难迅速原型新想法或复制已发表的RL算法。为了解决这些问题,这项工作描述了ACME,这是一个用于构建新型RL算法的框架,这些框架是专门设计的,用于启用使用简单的模块化组件构建的代理,这些组件可以在各种执行范围内使用。尽管ACME的主要目标是为算法开发提供一个框架,但第二个目标是提供重要或最先进算法的简单参考实现。这些实现既是对我们的设计决策的验证,也是对RL研究中可重复性的重要贡献。在这项工作中,我们描述了ACME内部做出的主要设计决策,并提供了有关如何使用其组件来实施各种算法的进一步详细信息。我们的实验为许多常见和最先进的算法提供了基准,并显示了如何为更大且更复杂的环境扩展这些算法。这突出了ACME的主要优点之一,即它可用于实现大型,分布式的RL算法,这些算法可以以较大的尺度运行,同时仍保持该实现的固有可读性。这项工作提出了第二篇文章的版本,恰好与模块化的增加相吻合,对离线,模仿和从演示算法学习以及作为ACME的一部分实现的各种新代理。
translated by 谷歌翻译